Puze Liu, Kuo Zhang, Davide Tateo, Snehal Jauhri, Jan Peters, and
Georgia Chalvatzaki
Techinal University Darmstadt
Spheres, Cylinders
Neural Network
$$ d_{\vq}(\vx) = \left[1-\sigma_{\vtheta}(\vx, \vq)\right]\textcolor{YellowGreen}{\underbrace{f_{\vtheta}(\vx, \vq)}_{\mathrm{NN}}} + \sigma_{\vtheta}(\vx, \vq)\textcolor{orange}{\underbrace{\lVert \vx - \vx_c \rVert_2}_{\mathrm{Point\,Dist.}}}$$
$$ d_{\vq}(\vx) = \left[1-\sigma_{\vtheta}(\vx, \vq)\right]\textcolor{YellowGreen}{\underbrace{f_{\vtheta}(\vx, \vq)}_{\mathrm{NN}}} + \sigma_{\vtheta}(\vx, \vq)\textcolor{orange}{\underbrace{\lVert \vx - \vx_c \rVert_2}_{\mathrm{Point\,Dist.}}}$$
$ \sigma_{\vtheta}(\vx, \vq) = \sigmoid\left(\textcolor{OrangeRed}{\alpha_{\vtheta}}\left( \lVert\vx - \vx_c\rVert_2 - \textcolor{OrangeRed}{\rho_{\vtheta}} \right)\right) $
Obtain Point
Cloud
Obtain Point
Cloud
Estimate Normal
Directions
Obtain Point
Cloud
Estimate Normal
Directions
Filter Out
Outliers
Obtain Point
Cloud
Estimate Normal
Directions
Filter Out
Outliers
Augment Data
Point
Obtain Point
Cloud
Estimate Normal
Directions
Filter Out
Outliers
Augment Data Point
Down Sampling
$$ \mathcal{L}(\mathcal{D}) = \sum_{\mathcal{D}} \underbrace{\omega_{\vq}(\vx)\left(\bar{d}_{\vq}(\vx) -d_{\vq}(\vx)\right)^2}_{\mathrm{Weighted\,MSE}} + \underbrace{\left( \lVert D_{\vq}(\vx)\bar{\vn}_{\vq}(\vx)\rVert^2_2 + \lVert N_{\vq}(\vx)\nabla_{\vx} d_{\vq}(\vx)\rVert^2_2 \right)}_{\mathrm{Normal\, Direction\; Alignment}} + \underbrace{\gamma\rho_{\vtheta}(\vx,\vq)^2}_{\mathrm{Regularizer\,\\Switching\,Radius}} $$
Obtain Point
Cloud
Estimate Normal
Directions
Filter Out
Outliers
Augment Data Point
Down Sampling
Table
Shelf
Table
Shelf
Tiago
Human
Ground Truth
ReDSDF
DeepSDF
ECMNN
ReDSDF: Points of Interest
Sphere Approximation
No Avoidance
Collision
Sphere Based
Oscillation
ReDSDF
Smooth Motion
Distance Field:
$\;\frac{1}{3}
\vd_{\mathrm{human,robot}} - 0.25$
Distance Field:
$\;\frac{1}{3} \vd_{\mathrm{human,robot}} - 0.25$
Distance Field at 0.1m