Intelligent Autonomous Systems
Technical University Darmstadt
Low Adaptability
Task Specific
Heavy Engineering
Dexterous Manipulation, Open AI
Dexterous Manipulation, Open AI
Hutter M., Robotics Systems Lab, ETH
Dexterous Manipulation, Open AI
Hutter M., Robotics Systems Lab, ETH
Ploeger K., IAS, TU Darmstadt
Puck Tracking and Prediction
Trajectory Planner
Puck Tracking and Prediction
Trajectory Planner
Puck Tracking and Prediction
Trajectory Planner
Puck Tracking and Prediction
Trajectory Planner
Maximize the hitting velocity at the hitting point $\vp_h$ along the desired direction $\vv_h$
For every trajectory point:
Boundary conditions:
Additional Requirement:
1. Hitting Configuration - NLP
$\begin{aligned} \max_{\vq} \quad &\| \vv_h^{\intercal} \mJ(\vq) \| + \lambda \| \vq - \vq_0\| \\ \text{s.t.} \quad & \text{FK}(\vq) = \vp_h \\ & \vq_{\text{min}} < \vq < \vq_{\text{max}} \end {aligned}$
1. Hitting Configuration - NLP
$\begin{aligned} \max_{\vq} \quad &\| \vv_h^{\intercal} \mJ(\vq) \| + \lambda \| \vq - \vq_0\| \\ \text{s.t.} \quad & \text{FK}(\vq) = \vp_h \\ & \vq_{\text{min}} < \vq < \vq_{\text{max}} \end {aligned}$
$\vq^*$
2. Hitting Velocity - LP
$\begin{aligned} \max_{\dot{\vq}} \quad & \dot{\vq} \cdot \vv_h^{\intercal} \mJ(\vq^*) \\ \text{s.t.} \quad & \dot{\vq}_{\text{min}} < \dot{\vq} < \dot{\vq}_{\text{max}} \end {aligned}$
1. Hitting Configuration - NLP
$\begin{aligned} \max_{\vq} \quad &\| \vv_h^{\intercal} \mJ(\vq) \| + \lambda \| \vq - \vq_0\| \\ \text{s.t.} \quad & \text{FK}(\vq) = \vp_h \\ & \vq_{\text{min}} < \vq < \vq_{\text{max}} \end {aligned}$
$\vq^*$
2. Hitting Velocity - LP
$\begin{aligned} \max_{\dot{\vq}} \quad & \dot{\vq} \cdot \vv_h^{\intercal} \mJ(\vq^*) \\ \text{s.t.} \quad & \dot{\vq}_{\text{min}} < \dot{\vq} < \dot{\vq}_{\text{max}} \end {aligned}$
$\vq^*$
3. Collision Free Planning
1. Hitting Configuration - NLP
$\begin{aligned} \max_{\vq} \quad &\| \vv_h^{\intercal} \mJ(\vq) \| + \lambda \| \vq - \vq_0\| \\ \text{s.t.} \quad & \text{FK}(\vq) = \vp_h \\ & \vq_{\text{min}} < \vq < \vq_{\text{max}} \end {aligned}$
$\vq^*$
2. Hitting Velocity - LP
$\begin{aligned} \max_{\dot{\vq}} \quad & \dot{\vq} \cdot \vv_h^{\intercal} \mJ(\vq^*) \\ \text{s.t.} \quad & \dot{\vq}_{\text{min}} < \dot{\vq} < \dot{\vq}_{\text{max}} \end {aligned}$
$\vq^*$
4. Trajectory Optimization - QP
$ \begin{aligned} \max_{\valpha_i} \quad & \| \vb_i + \mN_{i}\valpha_i - \dot{\vq}^{a} \|_{W} \\ \text{s.t.} \quad & \dot{\vq}_{\text{min}} < \vb_i + \mN_{i}\valpha_i < \dot{\vq}_{\text{max}} \\ & \vq_{\text{min}} < \vq_{i-1} + (\vb_i + \mN_{i}\valpha_i)\mathrm{\Delta} t < \vq_{\text{max}} \\ \text{with} \quad & \mN_i = \text{Null}(\mJ(\vq_i)), \\ & \vb_i = \mJ^{\dagger}(\vq_i)\left[ \dot{\vx}_{i} + (\vx_{i} - \text{FK}(q_i)) / \mathrm{\Delta}t \right] \end{aligned} $
$\vx_{i}$
$\dot{\vx}_{i}$
3. Collision Free Planning
Optimization Result
Optimization Result
Success Rate: 53.6%
Puck Tracking and Prediction
Trajectory Planner
Puck Tracking and Prediction
Trajectory Planner
Defend
Defend
Repel
Defend
Repel
Prepare
Puck Tracking and Prediction
Trajectory Planner
Puck Tracking and Prediction
Trajectory Planner
High-Level Policy
Learning Collision Dynamics
System Identification
Puck Tracking and Prediction
Trajectory Planner
High-Level Policy
Learning Collision Dynamics
System Identification
Problem Formulation
$$\begin{aligned} \max_{\pi} \quad & \bbE_{\tau \sim \pi}\left[ \sum_{t}^{T}\gamma^t r(\vs_t, \va_t) \right] \\ \text{s.t.} \quad & \mathcal{E}(\vs_t) = \vzero, \; \mathcal{I}(\vs_t) < \vzero, \; t\in[0, \cdots, T] \end{aligned}$$
$$\begin{aligned} \max_{\pi} \quad & \bbE_{\tau \sim \pi}\left[ \sum_{t}^{T}\gamma^t r(\vs_t, \va_t) \right] \\ \text{s.t.} \quad & \mathcal{E}(\vq_t, \vx_t) = \vzero, \; \mathcal{I}(\vq_t, \vx_t) < \vzero, \; t\in[0, \cdots, T] \\ & \vs_t = [\vq_t \;\; \vx_t] \end{aligned}$$
Problem Formulation
$$\begin{aligned} \max_{\pi} \quad & \bbE_{\tau \sim \pi}\left[ \sum_{t}^{T}\gamma^t r(\vs_t, \va_t) \right] \\ \text{s.t.} \quad & \mathcal{E}(\vq_t, \vx_t) = \vzero, \; \mathcal{I}(\vq_t, \vx_t) < \vzero, \; t\in[0, \cdots, T] \\ & \vs_t = [\vq_t \;\; \vx_t] \end{aligned}$$
Constraint Manifold
$$\MM_c = \left\{ (\vq, \vx, \vmu) \in \RR^{Q+E+I} \left| c(\vq, \vx, \vmu) = \begin{bmatrix} \mathcal{E}(\vq, \vx) \\ \mathcal{I}(\vq, \vx) + h(\vmu) \end{bmatrix} \right. = \vzero \right\}$$
$$h(\vmu)=\begin{bmatrix}h_0(\mu_0) \\ \cdots \\ h_I(\mu_I)\end{bmatrix}, \text{with} \; h_i:\RR \rightarrow \RR^+$$
Constraint Manifold
$$\MM_c = \left\{ (\vq, \vx, \vmu) \in \RR^{Q+E+I} \left| c(\vq, \vx, \vmu) = \begin{bmatrix} \mathcal{E}(\vq, \vx) \\ \mathcal{I}(\vq, \vx) + h(\vmu) \end{bmatrix} \right. = \vzero \right\}$$
Tangent Space
$$\mathrm{T}_{(q, x,\mu)}\MM_c = \left\{ (\dot{\vq}, \dot{\vx}, \dot{\vmu}) \left| \dot{c}(\vq,\vx,\vmu)= \mJ_q \dot{\vq} + \mJ_x \dot{\vx} + \mJ_{\mu}\dot{\vmu} = \vzero \right. \right\}$$
Nonlinear Control Affine System
$$\dot{\vq}=f(\vq) + G(\vq)\va$$
Tangent Space with Nonlinear Affine System
$$\mathrm{T}_{(q, x,\mu)}\MM_c = \left\{ (\va, \dot{\vx}, \dot{\vmu}) \left| \mJ_G\va + \mJ_{\mu}\dot{\vmu} + F(\vq, \vx, \dot{\vx}) = \vzero \right. \right\}$$
with $\mJ_G = \mJ_q G(q)$ and $F(\vq, \vx, \dot{\vx})=\mJ_q f(q) + \mJ_x \dot{\vx}$
Tangent Space with Nonlinear Affine System
$$\mathrm{T}_{(q, x,\mu)}\MM_c = \left\{ (\va, \dot{\vx}, \dot{\vmu}) \left| \mJ_G\va + \mJ_{\mu}\dot{\vmu} + F(\vq, \vx, \dot{\vx}) = \vzero \right. \right\}$$
We assume the $\dot{\vx}$ are known, estimated or zero.
Safe Controller
$\begin{bmatrix}\va \\ \dot{\vmu}\end{bmatrix} = \mN_{[G, \mu]} \textcolor{greenyellow}{\valpha} - \mJ^{\dagger}_{[G, \mu]}F(\vq, \vx, \dot{\vx})$
with $\mJ_{[G, \mu]} = [\mJ_G \; \mJ_{\mu}]$, $\mN_{[G, \mu]}=\text{Null}(\mJ_{[G, \mu]})$
Manipulation
Manipulation
Navigation
Manipulation
Navigation
Interaction
Puck Tracking and Prediction
Trajectory Planner
High-Level Policy
Learning Collision Dynamics
System Identification
Puck Tracking and Prediction
Trajectory Planner
High-Level Policy
Learning Collision Dynamics
System Identification
Requirement
Solution
Lisjalous Hit
Lisjalous Hit
Dynamic Hit
Puck Tracking and Prediction
Trajectory Planner
High-Level Policy
Learning Collision Dynamics
System Identification
Puck Tracking and Prediction
Trajectory Planner
High-Level Policy
Learning Collision Dynamics
System Identification